159 research outputs found

    Analysis of Second-order Statistics Based Semi-blind Channel Estimation in CDMA Channels

    Full text link
    The performance of second order statistics (SOS) based semi-blind channel estimation in long-code DS-CDMA systems is analyzed. The covariance matrix of SOS estimates is obtained in the large system limit, and is used to analyze the large-sample performance of two SOS based semi-blind channel estimation algorithms. A notion of blind estimation efficiency is also defined and is examined via simulation results.Comment: To be presented at the 2005 Conference on Information Sciences and System

    Impact of Channel Estimation Errors on Multiuser Detection via the Replica Method

    Get PDF
    For practical wireless DS-CDMA systems, channel estimation is imperfect due to noise and interference. In this paper, the impact of channel estimation errors on multiuser detection (MUD) is analyzed under the framework of the replica method. System performance is obtained in the large system limit for optimal MUD, linear MUD and turbo MUD, and is validated by numerical results for finite systems.Comment: To appear in the EURASIP Journal on Wireless Communication and Networking - Special Issue on Advanced Signal Processing Algorithms for Wireless Communication

    Adaptive Channel Recommendation For Opportunistic Spectrum Access

    Full text link
    We propose a dynamic spectrum access scheme where secondary users recommend "good" channels to each other and access accordingly. We formulate the problem as an average reward based Markov decision process. We show the existence of the optimal stationary spectrum access policy, and explore its structure properties in two asymptotic cases. Since the action space of the Markov decision process is continuous, it is difficult to find the optimal policy by simply discretizing the action space and use the policy iteration, value iteration, or Q-learning methods. Instead, we propose a new algorithm based on the Model Reference Adaptive Search method, and prove its convergence to the optimal policy. Numerical results show that the proposed algorithms achieve up to 18% and 100% performance improvement than the static channel recommendation scheme in homogeneous and heterogeneous channel environments, respectively, and is more robust to channel dynamics

    Multi-agent Q-Learning of Channel Selection in Multi-user Cognitive Radio Systems: A Two by Two Case

    Full text link
    Resource allocation is an important issue in cognitive radio systems. It can be done by carrying out negotiation among secondary users. However, significant overhead may be incurred by the negotiation since the negotiation needs to be done frequently due to the rapid change of primary users' activity. In this paper, a channel selection scheme without negotiation is considered for multi-user and multi-channel cognitive radio systems. To avoid collision incurred by non-coordination, each user secondary learns how to select channels according to its experience. Multi-agent reinforcement leaning (MARL) is applied in the framework of Q-learning by considering the opponent secondary users as a part of the environment. The dynamics of the Q-learning are illustrated using Metrick-Polak plot. A rigorous proof of the convergence of Q-learning is provided via the similarity between the Q-learning and Robinson-Monro algorithm, as well as the analysis of convergence of the corresponding ordinary differential equation (via Lyapunov function). Examples are illustrated and the performance of learning is evaluated by numerical simulations.Comment: submitted to 2009 IEEE International Conference on Systems, Man, and Cybernetics; the results of general n by m case will be published soo
    • …
    corecore